Yadav, V., Landge, V. G., Subaramanian, M., & Balaraman, E. (2020). Manganese-catalyzed a-olefination of nitriles with secondary alcohols. ACS Catalysis, 10(2), 947-954. DOI: 10.1021/acscatal.9b02811
Category: Chemistry
Manganese(I)-catalyzed sustainable synthesis of quinoxaline and quinazoline derivatives with the liberation of dihydrogen
Mondal, A., Sahoo, M. K., Subaramanian, M., & Balaraman, E. (2020). Manganese(I)-catalyzed sustainable synthesis of quinoxaline and quinazoline derivatives with the liberation of dihydrogen. Journal of Organic Chemistry, 85(11), 7181-7191. DOI: 10.1021/acs.joc.0c00561
Catalytic conversion of ketones to estersviaC(O)-C bond cleavage under transition-metal free conditions
Subaramanian, M., Ramar, P. M., Rana, J. … & Balaraman, E. (2020). Catalytic conversion of ketones to estersviaC(O)-C bond cleavage under transition-metal free conditions. Chemical Communications, 56(58), 8143-8146. DOI: 10.1039/D0CC03312J
N-Graphitic modified cobalt nanoparticles supported on graphene for tandem dehydrogenation of ammonia-borane and semihydrogenation of alkynes
Jaiswal, G., Landge, V. G., Subaramanian, M., … & Balaraman, E. (2020). N-Graphitic modified cobalt nanoparticles supported on graphene for tandem dehydrogenation of ammonia-borane and semihydrogenation of alkynes. ACS Sustainable Chemistry & Engineering, 8(30), 11058-11068. DOI: 10.1021/acssuschemeng.9b07211
Iron-catalyzed direct Julia-type olefination of alcohols
Landge, V. G., Babu, R., Yadav, V., … & Balaraman, E. (2020). Iron-catalyzed direct Julia-type olefination of alcohols. Journal of Organic Chemistry, 85(15), 9876-9886. DOI: 10.1021/acs.joc.0c01173
Selective hydrogenation of primary amides and cyclic di-peptides under Ru-catalysis
Subaramanian, M., Sivakumar, G., Babu, J. K., & Balaraman, E. (2020). Selective hydrogenation of primary amides and cyclic di-peptides under Ru-catalysis. Chemical Communications, 56(82), 12411-12414. DOI: 10.1039/d0cc04550k
Confinement of nanoparticles in carbon nanotubes: A new paradigm in heterogeneous catalysis. In P. Sudarsanam & L. Singh (Eds.),
Shaikh, M., & Balaraman, E. (2020). Confinement of nanoparticles in carbon nanotubes: A new paradigm in heterogeneous catalysis. In P. Sudarsanam & L. Singh (Eds.), Advanced heterogeneous catalysts Vol. 1: Applications at the nano-scale (pp. 459-481). American Chemical Society. DOI: 10.1021/bk-2020-1359.ch015
Developments and perspectives in 3d transition-metal-based electrocatalysts for neutral and near-neutral water electrolysis
Anantharaj, S., & Aravindan, V. (2020). Developments and perspectives in 3d transition-metal-based electrocatalysts for neutral and near-neutral water electrolysis. Advanced Energy Materials, 10(1). DOI: 10.1002/aenm.201902666
Surface enriched graphene hollow spheres towards building ultra-high power sodium-ion capacitor with long durability
Thangavel, R., Kannan, A. G., Ponraj, R., … Aravindan, V. et al. (2020). Surface enriched graphene hollow spheres towards building ultra-high power sodium-ion capacitor with long durability. Energy Storage Materials, 25. 702-713. DOI: 10.1016/j.ensm.2019.09.016
Highly reversible water splitting cell building from hierarchical 3D Nickel manganese oxyphosphide nanosheets
Balamurugan, J., Nguyen, T. T., Aravindan, V. et al. (2020). Highly reversible water splitting cell building from hierarchical 3D Nickel manganese oxyphosphide nanosheets. Nano Energy, 69. DOI: 10.1016/j.nanoen.2019.104432