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ABSTRACT

Context. Critical transitions occur in complex dynamical systems when the system dynamics undergoes a regime shift. These can
often occur with little change in the mean amplitude of the system response prior to the actual time of transition. The recent dimming
and brightening event in Betelgeuse occurred as a sudden shift in the brightness and has been the subject of much debate. Internal
changes or an external dust cloud have been suggested as reasons for this change in variability.
Aims. We examine whether the dimming and brightening event of 2019–20 could be due to a critical transition in the pulsation
dynamics of Betelgeuse by studying the characteristics of the light curve prior to transition.
Methods. We calculated the quantifiers hypothesized to rise prior to a critical transition for the light curve of Betelgeuse up to
the dimming event of 2019–20. These included the autocorrelation at lag-1, variance, and the spectral coefficient calculated from
detrended fluctuation analysis, in addition to two measures that quantify the recurrence properties of the light curve. Significant rises
are confirmed using the Mann-Kendall trend test.
Results. We see a significant increase in all quantifiers (p < 0.05) prior to the dimming event of 2019–20. This suggests that the event
was a critical transition related to the underlying nonlinear dynamics of the star.
Conclusions. Together with results that suggest a minimal change in Teff and IR flux, a critical transition in the pulsation dynamics
might be a reason for the unprecedented dimming of Betelgeuse. The rise in the quantifiers we studied prior to the dimming event
supports this possibility.
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1. Introduction

Betelgeuse, or α Orionis, is a fascinating supergiant whose
variability has been of particular interest to astronomers. As
a semiregular variable star, Betelgeuse usually varies in visual
magnitude from 0.6 to 1.1 approximately every 425 days, with
some evidence of a longer 5.9-year period (Goldberg 1984;
Samus et al. 2017; Dupree et al. 1987; Stothers & Leung 1971).
This rapidly evolving supergiant that is well off the main
sequence is particularly exciting to study, since quasi-hydrostatic
evolutionary models predict that it will undergo a supernova
explosion sometime in the next 100 000 years (Dolan et al.
2016).

The interest in this star suddenly increased at the end of
2019 because a strong dimming and subsequent rapid bright-
ening event took place (Guinan & Wasatonic 2020; Sigismondi
2020a). The dimming reported by Guinan et al. (2019) reignited
the questions related to the internal dynamics of this red super-
giant (RSG) and led to speculations regarding an impending
supernova explosion. Multiple hypotheses have been suggested
in order to explain this dimming, which was recorded as the
dimmest that the star has been in its observational history.
Proposed explanations for the dimming phenomenon include
an increase in the circumstellar dust or cooling in convective
cells (Levesque & Massey 2020). Some authors have also noted

that the dimming coincides with the minimum in the 2300-
day and 400-day periodicities of the star (Sigismondi 2020b;
Percy 2020). The hypothesis that the dimming is due to varia-
tion in the convective cells has been refuted by a measurement
of the surface temperature of the star, which showed no signif-
icant difference between the Teff measured in 2004 and near
the minimum in 2020 (Levesque & Massey 2020). This sug-
gested that a dust cloud must be responsible for the rapid dim-
ming of the star. The circumstellar envelope around Betelgeuse
was previously observed and characterized by Haubois et al.
(2019). Gupta & Sahijpal (2020) further characterized the nature
of the dust grains that can condense in this circumstellar enve-
lope. While initial measurements by Cotton et al. (2020) dur-
ing the dimming phase indicated a reduction in polarization,
detailed analysis suggested that the polarized flux from the
envelope remained constant during the dimming, and subse-
quently increased during the brightening (Safonov et al. 2020).
Safonov et al. (2020) suggested that a dust cloud would result
in an IR excess close to the dimming. However, measurements
by Gehrz et al. (2020) during the dimming episode in the IR
region inferred that no significant change in flux was observed.
This was further supported by observations in the submillimeter
wavelength by Dharmawardena et al. (2020).

A critical transition occurs in a nonlinear dynamical system
when the nature of the system dynamics undergoes a drastic
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change. In dynamical systems theory, the point where this tran-
sition occurs is called a bifurcation point (Hilborn 2000). Very
often, these critical transitions can take place with no visible
variation in the mean amplitude in the system dynamics prior to
the point of actual transition. This makes these changes difficult
to predict.

One of the possibilities for the sudden dimming of
Betelgeuse could be a critical transition in the pulsation dynam-
ics of the star. Pulsation has long been understood as a cause
of variability in Betelgeuse (Dupree et al. 1987). Variability due
to stellar pulsations in many stars has been modeled using non-
linear dynamical models (Baker & Gough 1979; Kolláth et al.
2002). A transition in the pulsation dynamics of Betelgeuse
can be captured using nonlinear time-series analysis techniques
on the light curve of the star. Nonlinear time-series analysis
has been used in multiple fields of astronomy, and for stellar
variability in particular (Lindner et al. 2015; George et al. 2015;
Plachy et al. 2018). An important application of nonlinear time-
series analysis has been made in the prediction of critical transi-
tions in real-world systems.

A dynamical system can exist in one of its many possible
states, each of which may have a distinct pattern of evolution
and occurs for a particular range of system parameters. When
the parameters change beyond this range, the dynamical state of
the system changes to another state. This phenomenon, called
a dynamical transition, results in a qualitative change in the
dynamical behavior of the system. Critical transitions in dynam-
ical systems can take place even with minor changes in these
parameter values. Such critical transitions would lead to major
changes in the dynamical behavior of the system (Hilborn 2000).
For instance, a Hopf bifurcation would lead to the birth of sudden
periodic behavior. Seminal work by Scheffer et al. (2009) sug-
gested that prior to a critical transition in a dynamical system,
multiple time-series quantifiers increase (Scheffer et al. 2009,
2012). In particular the autocorrelation at lag-1, the variance,
and the spectral exponent have been shown to increase prior
to a transition. This has been used to predict dynamical transi-
tions in many fields, including ecology, engineering, and psychi-
atry (Dakos et al. 2012; Lenton et al. 2012; Trefois et al. 2015;
Ghanavati et al. 2014; Wichers & Groot 2016; Shalalfeh et al.
2016).

Another way to detect a change in the dynamics of a sys-
tem is to examine the associated phase space. Structures in
phase space trace the evolution of the system in a way that
can be quantified in terms of density and recurrence of points
in time. The pattern of return or recurrences can be analyzed
using what is known as recurrence quantification analysis (RQA;
Marwan et al. 2007). This pattern of return times is known to
change near critical transitions (Wissel 1984), which reflects as
changes in RQA measures. RQA measures have been used for
the characterization of system dynamics in different domains
such as climate studies (Zhao et al. 2011), physiological data
analysis (Acharya et al. 2011; Marwan et al. 2002), stock mar-
kets (Bastos & Caiado 2011), and engineering (Godavarthi et al.
2017). They have been particularly useful for the identification
of dynamical transitions, including periodic-chaos and chaos-
chaos transitions, as well as intermittent states (Marwan et al.
2013; Godavarthi et al. 2017).

In stellar variability, critical transitions often take place at
timescales that are much longer than the period of observation.
The event of 2019–20 in Betelgeuse is a welcome exception. We
examine the variation of these quantifiers in the light curve of
Betelgeuse from 1990–2019 up to the transition. We then search
for significant variations in these quantifiers over time. If the

dimming and subsequent brightening event of 2019–20 was due
to internal factors leading to a critical transition in the pulsation
dynamics of the star, we expect a detectable increase in these
quantifiers.

2. Early warning signals in Betelgeuse

Transitions in dynamics are characteristic of complex nonlinear
dynamical systems, whereby the dynamics of the system under-
goes a regime shift. Many of these sharp transitions are preceded
by early warning signals in the system response. A positive
feedback loop drives the system forward to a bifurcation point
after a critical threshold is achieved (Scheffer et al. 2009). Two
quantifiers that are hypothesized to rise in this scenario are the
variance and the autocorrelation at lag-1 (ACF(1)). A closely
related quantifier is the detrended fluctuation analysis (DFA)
exponent α, which measures long-term memory in the time
series (Peng et al. 1994). Briefly, the detrended fluctuation anal-
ysis initially transforms the data into a time series of the cumu-
lative amplitude distribution. The fluctuation (determined as the
root mean squared deviation) of this cumulative time series from
the linear trend is calculated at different timescales. This fluc-
tuation is expected to rise as a power law with respect to the
timescale considered, the exponent of which is the Hurst expo-
nent, α (Peng et al. 1994; Livina & Lenton 2007; Shalalfeh et al.
2016). A sudden shift in the observed response of a system
need not necessarily be preceded by an early warning signal.
For instance, a sudden change in the observational data, caused
by some external influences, may not show any warning signals.
Even for sudden observational shifts caused by dynamical tran-
sitions, only some are clearly preceded by early warning signals.
However, early warning signals, if detected in a system, can be
taken as a good indication of a possible approaching transition
(Scheffer et al. 2012).

For our analysis we used light-curve data from the American
Association of Variable Star Observers (AAVSO; Kafka 2020).
The light curve of Betelgeuse was binned into ten-day bins to
examine the long trends in the data. As mentioned earlier, we
quantified the lag-1 autocorrelation, the variance, and the Hurst
exponent α (Scheffer et al. 2009; Livina & Lenton 2007).

The quantifiers were calculated over moving windows with
a size of 300 points. The window was moved forward by one
data point, regardless of gaps. A study across different window
sizes was conducted, and the results are shown in Appendix C.
While the effect sizes decreased for individual quantifiers, espe-
cially at small window sizes, the broad conclusions remain
unchanged. All calculations were conducted in python 3.5.2
using the numpy, scipy, and entropy packages (Oliphant 2006;
Virtanen et al. 2020; Vallat 2020).

Missing data are a cause for concern in this dataset, as
Betelgeuse is not observable for a long period between May and
July. However, if stationarity is assumed at the timescales of the
size of the gaps, calculations of the variance and ACF(1) should
not be affected much by missing data. Furthermore, the Hurst
exponent α has been shown to be very robust to missing data in
positively correlated data (Ma et al. 2010). The profile of gaps
in the AAVSO dataset and its variation with time is considered
in Appendix A. Because of the many gaps in the period from
1980–1990, trends were analyzed for the period starting from
1990 onward.

To determine trends in the quantifiers, we examined the
Kendall correlation coefficient (τK) up to the transition point.
To correct for correlation due to the moving-window approach,
we used the Hamed-Rao correction (Hamed & Rao 1998).
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Table 1. Significant increases in early warning signals prior to the dim-
ming event in Betelgeuse data.

Quantifier Trend τK p-value

ACF(1) Increase 0.752 <0.001
Variance Increase 0.653 <0.001

α Increase 0.505 0.008

Notes. Kendall-τ correlation coefficient (τK), p-value, and significance
calculated using the modified Mann-Kendall test applied after correc-
tions Hamed & Rao (1998).

Calculations were conducted using the pymannkendall package
in python (Hussain & Mahmud 2019). Increasing trends are seen
for all three quantifiers with time prior to the transition in bright-
ness, indicating that a dynamical transition in Betelgeuse led to
the 2019–20 dimming and brightening event. The trends, values
of τK , and p-values are listed in Table 1. The change in the early
warning signals with time are shown in Fig. 1. The gray region
(1980–90 data) in Fig. 1 shows an increased variance and α prior
to the period considered. Joyce et al. (2020) pointed out a major
dimming event in the mid to late 1980s, which may be a pos-
sible explanation for the change in these quantifiers around that
period. In the next section, we supplement the warning signals
we detected in this section with quantifiers derived using recur-
rence quantification analysis.

3. Recurrence-based analysis

Recurrence-based measures have been applied for the study
of black holes (Jacob et al. 2018), variable stars (George et al.
2019), solar radiation (Ogunjo et al. 2017), and exoplanetary
systems (Kovács 2019). A rather remarkable advantage of RQA
measures is their ability to detect dynamical transitions from a
time series even when the details of the underlying dynamics
are elusive (Marwan et al. 2013; Thiel et al. 2004). Recurrence-
based measures are successful even with nonstationary and short
datasets (Marwan et al. 2007).
The time series was first transformed into an attractor in phase
space by what is known as delay embedding (Kantz & Schreiber
2004; Takens 1981). The process generates an attractor in phase
space that is topologically equivalent to the original attractor and
captures evolution of the system for the duration of a given time
series. Every point on the attractor is considered a vector, and
a distance matrix is constructed that encapsulates recurrences
in the system in terms of distances between the vectors. When
we apply a threshold to the distance metric such that the points
within the threshold are considered close, then we obtain the
recurrence matrix, R. Each element of R corresponds to a unique
pair of points in the phase space, and the value of 1 indicates
their proximity (0 otherwise). The visual representation of R,
with zeros as white dots and ones as black dots is a recurrence
plot (RP).

The RP for the entire time series of Betelgeuse for the dura-
tion 1980 up to just before the dimming event in 2019 is shown
in Fig. 2 for illustration. The moving-window approach consid-
ers segments of the time series, however, and the corresponding
RPs are constructed for each window. We fixed the recurrence
threshold such that the recurrence rate remained at 0.1 and cal-
culated other quantifiers. The exact definitions along with the
parameters we used for the construction of the RP are given in
Appendix B.

Fig. 1. Variation in (panel a) autocorrelation at lag-1, (panel b) variance,
and (panel c) spectral coefficient, α, calculated from detrended fluctu-
ation analysis prior to the dimming event. The period from 1980–1990
is shown in gray, and the period from 1990 onward is shown in green.
A visible rise can be seen leading towards the event. The calculated
quantifier is plotted at the end time of the moving window.

The RQA measures assess the patterns formed by points,
diagonal lines, vertical lines, and other structures in the RP. RQA
measures such as the recurrence rate (RR), determinism (DET),
and laminarity (LAM) are intimately related to the underlying
dynamics: RR computes the number of recurred states (based
on the number of recurrence points), DET estimates how deter-
ministic the dynamics appears to be (based on the distribution of
diagonal lines in the RP), and LAM reflects the extent of laminar
phases in the system (based on the distribution of white vertical
lines), or intermittency. In the case of a dynamical transition,
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Fig. 2. Recurrence plot of the time series of Betelgeuse. Upper panel:
corresponding time series (in blue). The red part (dimming) was not
included in the analysis. The parameters used are m = 1, τ = 1, and
fixed RR = 0.1.

the values should deviate significantly from an overall average
calculated with the assumption of no transition (Marwan et al.
2013; Schinkel et al. 2009).

The behavior of these measures is shown in Fig. 3. Lam-
inarity and DET both increase systematically as the dimming
episode approaches and appear to follow a similar trend overall.
The results quantifying the change in the DET and LAM mea-
sures with time using the modified Mann-Kendall test is shown
in Table 2 (Hamed & Rao 1998). The test confirms a significant
gradual increase in the measures. We observe that the measures
of DET and LAM exceed the 95% confidence level (obtained
from 1000 bootstrappings, as suggested by Schinkel et al. 2009)
before the dimming with LAM slightly rises before DET. This
behavior can be expected from intermittency (reflected in the
high value of the LAM) associated with the phenomenon of crit-
ical slowing down that leads to a dynamical shift (significant
change in DET).

4. Results and discussion

We analyzed the light curve of Betelgeuse from 1990 until
the dimming event. Our analysis suggests that signatures of an
impending change in the nonlinear dynamics can be observed
from the properties of the light curve preceding the dimming
episode. The quantifiers we used, which are employed in the lit-
erature on early warning signals and recurrence-based analysis,
showed conclusively that certain properties of the light curve
changed significantly prior to the dimming event in 2019. The
rise in early warning signals prior to the dimming episode in
late 2019 was quantified using the Mann-Kendall test, which
checks the correlation of the quantifiers with time. Along with
classically used early warning quantifiers, we also studied the
variation in the recurrence-based quantifiers. These indepen-
dently show a change prior to the dimming event. A comparison

Fig. 3. Variation in RQA measures (panel a) DET and (panel b) LAM
prior to the dimming event for fixed RR = 0.1. The red line indicates
the 95% confidence level. The color code is similar to that in Fig. 1. The
gray region refers to 1980–1990.

Table 2. Significant increases in RQA measures prior to the dimming
event in Betelgeuse data.

Quantifier Trend τK p-value

DET Increase 0.605 <0.001
LAM Increase 0.457 0.028

Notes. Kendall-τ correlation coefficient (τK), p-value, and significance
calculated using the modified Mann-Kendall test applied after the cor-
rections of Hamed & Rao (1998).

between the two suggests that the change in quantifiers started at
about the same time.

This result has a significant effect on our understanding
of the 2019 dimming event. The observations in the submil-
limeter wavelengths reported by Dharmawardena et al. (2020)
and in the IR by Gehrz et al. (2020) suggest that the dim-
ming is not compatible with a dust cloud. Our results add to
this conclusion by suggesting that the dimming event is best
explained by a change in the intrinsic dynamics of the star.
Levesque & Massey (2020) showed that Teff did not decrease
significantly during the dimming episode, which largely elimi-
nates a convection-driven dimming. The final option then sug-
gests a dimming episode that is driven by a change in the
pulsation dynamics. A pulsation-driven dimming episode of

L21, page 4 of 7

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202038785&pdf_id=2
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202038785&pdf_id=3


S. V. George et al.: Early warning signals indicate a critical transition in Betelgeuse

about one magnitude reduction would not cause a significant
reduction in Teff and has already been proposed as a probable
cause by Dharmawardena et al. (2020). Because much of the
flux in Betelgeuse is emitted in the IR region, small changes in
Teff can lead to large changes in the emitted visible light spec-
trum (Karttunen et al. 2016; Reid & Goldston 2002). This means
that dimming due to a critical transition in the stellar pulsation
dynamics can occur with minimal change in the IR spectrum,
consistent with observations on Betelgeuse during the dimming
(Gehrz et al. 2020; Reid & Goldston 2002).

5. Conclusions

The reasons for the dimming and brightening event in
Betelgeuse during 2019–20 still remain largely unclear. Stochas-
tic chance variations, oscillatory phenomena, etc. are various
possibilities that might explain this event. A critical transition
in the pulsation dynamics of the star is another possibility. The
observation of early warning signals in the Betelgeuse light
curve well before the dimming event suggests that it might be
caused by the latter. An increase in early warning signals is
thought to be suggestive of an impending critical transition in
the system (Scheffer et al. 2009). Our analysis shows significant
increases in the traditional early-warning-signal quantifiers as
well as in recurrence-plot-based quantifiers prior to the dimming
event. As opposed to a transient dimming episode, a critical tran-
sition would imply a permanent change in the behavior of the
system. As Betelgeuse becomes visible again, more data may
throw fresh light on the mystery that surrounds this event.
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Appendix A: Data gaps

Fig. A.1. Variation in (panel a) mean sampling time and (panel b)
number of gaps of the light curve over time. The gray dots repre-
sent the period from 1980–1990, and the blue dots show the period
from 1990 onward. The oscillation in panel a is due to the periodic
gaps that arise from lack of visibility of α-Orionis during part of the
year.

In this appendix we briefly describe the analysis of the preva-
lence of data gaps in the time series. The lack of visibility of
Orion from May to July results in periodic gaps in the light
curve. George et al. (2015) suggested that two distributions are
important to fully describe the prevalence of data gaps in a time
series: the distributions of the gap size, and the gap frequency.
The mean gap size for the entire time series is 19.14 days, and
the mean gap position (the average time between two gaps) is
20.98 days.

For our analysis it is important to determine whether the gap
distributions are stationary. We therefore examined the trends
in two quantities: the average sampling time in windows, and
the average number of gaps in windows. These are shown in
Fig. A.1. We find a higher prevalence of gaps in earlier periods
in the AAVSO data. Our analysis was therefore conducted from
the period starting in 1990.

Appendix B: Construction of recurrence plots

In this appendix we briefly describe the construction process of
recurrence plots (RPs) and discuss the parameters we used. The
process consists of two steps: embedding, and calculating the
recurrence matrix. The process of embedding leads to a recon-
structed attractor (collection of trajectories) in the phase space
where each point, or vector ui, represents a microstate. From the
given time series yt, vectors ui are constructed as follows:

ui = [y(ti), y(ti + τ), y(ti + 2τ), . . . , y(ti + (m − 1)τ)], (B.1)

where m is the embedding dimension (dimension of the phase
space), and τ is the delay (Takens 1981; Kantz & Schreiber
2004). Studies show that the properties of RPs do not vary signif-
icantly with embedding parameters (Thiel et al. 2004). We chose
m = 1 and τ = 1.

When the vectors ui are known, the next step is to construct
the recurrence matrix R as follows:

Ri j = Θ
(
ε −

∥∥∥ui − u j

∥∥∥) , (B.2)

where Θ is the Heaviside unit step function (Bracewell 2000),

Θ(x) =

{
0, for x ≤ 0
1, for x ≥ 0.

(B.3)

‖ . . . ‖ represent a distance norm (supremum norm used here)
between vectors ui and u j, and ε is the distance threshold. The
RP represents R visually, with zeros as white spaces and ones as
black spaces. Structures formed by these recurrence points, such
as the vertical lines, horizontal lines, and squares provide insight
into the underlying dynamics. The distributions of these struc-
tures in the RP are quantified by the respective RQA measures,
calculated from R (Marwan et al. 2002).

The RR is given as

RR =
1

N2

N∑
i, j=1

Ri j, (B.4)

where N is the total number of points. We adopted a variable ε
value for a fixed RR = 0.1.

Determinism, DET, captures the structure and extent of diag-
onal lines, indicating the degree to which we can predict the sys-
tem:

DET =

∑N
l=lmin

lP(l)∑N
l=1 lP(l),

(B.5)

where l represents the length and P(l) the distribution of the diag-
onal lines in the RP.

Laminarity, LAM, captures the structure and extent of verti-
cal lines, reflecting the laminar phases in the system. A laminar
phase in the system represents a micro-regime where the system
spends much time. It is given as

LAM =

∑N
v=vmin

vP(v)∑N
v=1 vP(v),

(B.6)

where v represents the length and P(v) the distribution of the
vertical lines in the RP.

Appendix C: Variation with window size

In this appendix, we consider the variation of standard early
warning signals with changing window size. We varied the win-
dow sizes for a bin size 10 from 100 to 500 for the dataset from
1990 onward. The results are presented in Tables C.1 and C.2 for
standard early-warning-signal measures and recurrence quantifi-
cation measures, respectively. The Kendall-τ coefficients were
calculated using the scipy package, and the corrected signifi-
cance values were calculated using the pymannkendall package
(Virtanen et al. 2020; Hussain & Mahmud 2019). The conclu-
sions drawn in the main text of this paper hold in general for
a range of window sizes.
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Table C.1. Kendall-τ correlation coefficient (τK) and p-value before and after applying the corrected Mann-Kendall test (Hamed & Rao 1998) for
the ACF, variance, and α from the detrended fluctation analysis.

Window size ACF τK p-value (corrected) Variance τK p-value (corrected) α τK p-value (corrected)

100 0.206 <0.001(.192) −0.004 0.874(0.978) 0.105 <.001(0.412)
200 0.394 <0.001(.055) 0.224 <.001(0.224) 0.318 <.001(0.094)
300 0.752 <0.001(<.001) 0.653 <0.001(<.001) 0.505 <0.001(.008)
400 0.892 <0.001(<.001) 0.889 <0.001(<.001) 0.597 <0.001(<.001)
500 0.769 <0.001(<.001) 0.784 <0.001(<.001) 0.061 0.146(.557)

Table C.2. Kendall-τ correlation coefficient (τK) and p-value before and after applying the corrected Mann-Kendall test (Hamed & Rao 1998) for
the DET and LAM measures from the recurrence quantification analysis.

Window size DET τK p-value (corrected) LAM τK p-value (corrected)

100 0.004 0.884(0.939) 0.122 <0.001(0.461)
200 0.336 <0.001(0.062) 0.188 <0.001(0.356)
300 0.613 <0.001(<0.001) 0.465 <0.001(<.028)
400 0.787 <0.001(<0.001) 0.657 <0.001(<.001)
500 0.864 <0.001(<0.001) 0.773 <0.001(<.001)
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