
ERROR ANALYSIS IN MONTE CARLO

This note is intended to review and clarify the comments I made about error analysis in Monte
Carlo, and illustrate them with the very simple example of a simulation of E(x) = 1

2
kx2.
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I. INTRODUCTION AND DEFINITIONS

We begin with the definitions,
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Here xi is the ith measured value of x, and N is the
number of measurements. The definitions of 〈x〉 and
〈x2〉 are unambiguous. The entire content of this note
is to clarify the proper denominator of the definition of
σ. Specifically, the formula for σ assumes that the N
measurements are all independent. Since successive val-
ues of x are generated from each other, this is never true.
The x values are more and more related the less time one
waits between measurements.
To quantify the correlations among successive x values,

we define the autocorrelation function,

c(l) =
1
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∑
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Here y(i) = x(i)−〈x〉measures the fluctuation of x about
its average value. c(l) measures whether those fluctua-
tions are related for x values l measurements apart. Say-
ing xi and xi+l are independent means whether xi+l is
above or below 〈x〉 (the sign of yi+l) is unrelated to the
sign of yi. If that is the case, c(l) = 0 (to within er-
rors). Clearly c(0) is never zero. In fact, c(0) = σ2. It is
conventional to redefine c(0)→ c(0)/σ2 so that c(0) = 1.

II. TIME HISTORIES

Let’s begin by looking at actual time histories of x. I
chose k = 1 and T = 2 so that 〈x2〉 = 2. The step size
for suggested changes in x is ∆. I measure every monte
carlo step and ran for N = 400000 sweeps. Here of course
since 〈x〉 = 0, yi = xi. The Monte Carlo time histories
are given in Figure 1. That the data are correlated is
immediately evident. If a value of xi is positive, its suc-
cessors tend to be positive and similarly if it is negative.
The dependence on the step size ∆ is easy to interpret.

FIG. 1: First 1000 steps in Monte Carlo time history of x

for three different step sizes ∆ = 1, 10, 200. (Acceptance
rates=0.70, 0.35, 0.02).

If ∆ is small you do not suggest much of a change, and
successive values of x are highly correlated. Likewise, if ∆
is large, most suggested Monte Carlo moves take you out
of the part of phase space of low energy and are rejected.
(This results in the long flat regions of the evolution of
x.)
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FIG. 2: Autocorrelation functions for the complete data sets
(400,000 steps) as in figure 1. (Step sizes ∆ = 1, 10, 200,
Acceptance rates=0.70, 0.35, 0.02).

III. CORRELATION FUNCTIONS

The plots of c(l) resulting from the same data are given
in Figure 2. We see that c(l) has a characteristic decay-
ing exponential form. We define the correlation time τ to
be the point when c(l = τ) = e−1 and say that measure-
ments of x are independent when l exceeds τ . (Strictly
speaking, we want c to go to zero, but c(τ) = e−1 is
an acceptable criterion.) Notice you can almost guess
the values of τ given by Figure 2 directly from the time
histories of Figure 1.

As mentioned earlier, in generating the above results
I measured x every Monte Carlo step. What happens if
one instead measures only every mth step? Define cm(l)
to be the correlation function when measurements are
only every mth Monte Carlo step. It is easy to convince
yourself that cm(l) = c1(ml), so the correlation function
rescales in a trivially fashion. The point is that if one
choose m > τ , then the measurements all become inde-
pendent.

• So one way to ensure the value for the error bar σ is

correct is to make sure measurements are separated by a

waiting time m > τ .

This approach has the advantage that one does not
waste time making measurements when the measure-
ments are not independent.

IV. REBINNING DATA

An alternate (and equivalent) approach to getting the
correct σ is by “rebinning” the data. Take a file con-
taining the complete time history of a measurement, for
example the data for x which is partially shown in Fig-
ure 1. Choose a “bin size” M , and average the data for
x over each of the L = N/M bins (remember N = total
number of measurements) to create L “binned measure-
ments” mj .

mj =
1

M

M∗j
∑

i=M∗(j−1)+1

xi. (5)

Treat these L values for m as your independent mea-
surements. As seen in Equation 5, the values for m are
already averages over M values of x. Define averages
and error bars as in Equation 1, with L replacing N in
the normalizations 1/N and 1/

√
N − 1. The average 〈x〉

is independent of M since all one is doing is reordering
a linear sum. The average 〈x2〉 is however altered, and
hence so is the error bar σ. Figure 3 shows values for σ
as a function of the number of x values in each bin, M .
What is the interpretation of Figure 3? Consider

M = 1. In this case only one value of x is put in each bin,
so that in calculating σ it is assumed all x are indepen-
dent. The error bar σ thus obtained is too small. As M
becomes larger, more x values are put in each bin, the
number of bins (independent measurements) decreases,
and σ increases. Eventually σ goes to an asymptotic
value which gives the correct error bar.
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FIG. 3: Error bars for different bin sizes M . Data is that
of Figures 1,2: step sizes ∆ = 1, 10, 200. (Acceptance
rates=0.70, 0.35, 0.02).

Why does σ not increase indefinitely as M increases?
You might expect it to, since the denominator

√
L− 1 is

getting smaller and smaller. The answer is that as more
measurements are put in each bin, the different bins fluc-
tuate less and less. The numerator which measures these
fluctuations decreases in exact compensation to the de-
nominator. (However, to reiterate, initially for M small
when you put more measurements in the bins the new
values are not independent and so the numerator does
not decrease.)

• So a second way to ensure the value for the error bar σ

is correct is to consider different binnings of the data, and

use the value obtained asymptotically as each bin contains

a lot of data.

How do we see this result is consistent with the cor-
relation function analysis? There are two checks. The
first is to see that the value for M at which σ starts to
flatten out should be roughly the same as the value of τ
for which c(l) gets small. Second, one can compare the
values of σ1 at M = 1, where one assumes all the x are
independent, with the asymptotic value σ∞. The claim
is that these should be related by σ∞ =

√
τσ1. You can

see this is roughly true: For ∆ = 1 we get σ1 = 0.0022
and σ∞ = 0.030 from Figure 3. If you assume all the
measurements are independent, you underestimate σ by
more than an order of magnitude. Meanwhile, from fig-
ure 2, τ ≈ 85, and hence √τ similarly reflects this order
of magnitude correction factor.

V. ACCEPTANCE RATE

The acceptance rate provides a rough guide to the
choice of a good step size. If the acceptance rate is too
much greater than 0.5, then one is likely in the limit of
Figures (1–3)a where the correlation time is unnecessar-
ily large due to small suggested moves. Likewise, if the
acceptance rate is too much less than 0.50, then one is
likely in the limit of Figures (1–3)c where the correlation
time is unnecessarily large due to multiple rejections.

VI. MY “CHEAP” APPROACH

I recommended a “cheapo” approach to error bars,
which was to bin the data from your run into 10 bins.
(M = N/10.) This strategy assumes that you were
doing a reasonably long run, so that N/10 > τ . My
thinking is that if this is violated, you are in more se-
rious trouble than just getting the wrong error bars:
you will have less than 10 independent measurements
(and perhaps have not even properly equilibrated) so it
is likely your expectation values themselves are wrong.
For the particular example we are doing, the reported
values from my simplistic approach for 〈x2〉 and σ were
1.973±0.051, 1.993±0.010, 1.995±0.039 for ∆ = 1, 10, 200
respectively. These error bars should be the same as the
asymptotic values of σ in Figure 3.

VII. FINAL COMMENTS

Does it matter which measurement you look at? I
have looked entirely at xi in doing this analysis. Would
it matter if I had examined x2

i or some other measure-
ment? For this simple problem I don’t think so. In more
complicated simulations it may be important to calculate
correlation times separately for measurements of “local”
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quantities (observables for degrees of freedom that are
close together spatially) and “global” quantities (observ-
ables for degrees of freedom that are far apart spatially).
The spatial separation of the different degrees of freedom
in an observable can affect the autocorrelation time. In
particular, observables containing quantities which are
widely spaced generally have longer correlation times.
More generally, the size of the system you are simu-

lating (and hence the spatial separations of the degreees
of freedom) can greatly affect the correlation time, es-
pecially in the vicinity of a phase transition. Just as
physical quantities like the specific heat, susceptibility
etc can diverge at a critical point, the correlation time
can diverge too as the system size increases near a critical
point. This of course makes Monte Carlo very difficult.
There is a big literature on solving this problem.


